
Math 131 B, Lecture 2
Analysis

Midterm 2

Instructions: You have 50 minutes to complete the exam. There are five problems, worth a
total of fifty points. You may not use any books or notes. Partial credit will be given for progress
toward correct proofs.

Write your solutions in the space below the questions. If you need more space use the
back of the page. Do not forget to write your name in the space below.

Name:

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50



Problem 1.

(a) [5pts.] Let (M,dM) and (S, dS) be two metric spaces. Give a definition of a contin-
uous function f : M → S.

Solution: We say that f is continuous if for every p ∈M and ε > 0 there exists
δ > 0 such that whenever dM(x, p) < δ, dS(x, p) < ε.

(b) [5pts.] For each of the following pairs of metric spaces, either construct a continuous
function f : M → S with f(M) = S or explain why one cannot exist.

• (a) M = (3, 5), S = Q.

• (b)M = [0, 1], S = C([0, 1]→ R).

• (c)M = R, S = {(x, y) : x2 + y2 = 1}.
• (d)M = (1, 2) ∪ (3, 4), S = {0, 1, 2}.

Solution: (a) M is connected and S is not, so there is no such map. (b) M is
compact and S is not, so there is no such map. (c) f(x) = (cos x, sinx). (d) M
is compact and S is not, so there is no such map. (d) M has two components
and S has three, so there is no such map.

Problem 2.

(a) [5pts.] Give a definition of a connected metric space M .

Solution: We say that M is connected if there do not exist disjoint nonempty
open sets A and B in M such that M = A ∪B.

(b) [4pts.] Prove that the intersection of two connected subsets of the real line is con-
nected.

Solution: Connected subsets of the real line are intervals. The intersection of
two intervals is a (possibly trivial) interval.

(c) [1pts.] Give an example showing that the above result need not be true in an
arbitrary metric space. (A sketch is fine, you don’t need to prove it.)

Solution: Consider two horseshoe shapes intersecting at their feet on the plane.

Problem 3.

(a) [5pts.] Let {fn} be a sequence of functions fn : S → T . What does it mean for fn
to converge uniformly to a function f : S → T?



Solution: We say that fn → f uniformly if for every ε > 0 there is some N
such that for n > N and all x ∈ S, we have dT (fn(x), f(x)) < ε.

(b) [5pts.] Prove that if fn → f uniformly and each fn is continuous, f is continuous.

Solution: Let ε > 0, and let x0 ∈ S. Choose N such that dT (fN(x), f(x)) < ε
3

for all x ∈ S. Choose δ such that dS(x, x0) < δ implies that dT (fN(x), fN(x0)) <
ε
3
. Then for dS(x, x0) < δ, we have

dT (f(x), f(x0)) ≤ dT (f(x), fN(x)) + dT (fN(x), fN(x0)) + dT (fN(x0), f(x0))

<
ε

3
+
ε

3
+
ε

3
< ε.

Since x0 was arbitrary, we conclude that f : S → T is continuous.

Problem 4.

(a) [5pts.] State Abel’s Theorem.

Solution: If a power series f(x) =
∑
an(x − a)n has radius of convergence

R, and converges at one of its endpoints x = a + R or x = a − R, then f is
continuous at that endpoint. (Or, if f(x) =

∑
anx

n has radius of convergence
1 and

∑
an converges, limx→1 f(x) =

∑
an.)

(b) [5pts.] Prove that the sum

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · ·

converges to π
4
.

Solution: We know that
∑∞

n=0
(−1)nx2n+1

2n+1
=

∫ ∑∞
n=0

(−x2)n
2n

=
∫

1
1+x2

= tan−1(x)
converges on (−1, 1). When x = 1 we get the series in the statement of the question,
which converges by the Alternating Series Test. So, by Abel’s Theorem, the sum
1− 1

3
+ 1

5
− 1

7
+ · · · is tan−1(1) = π

4
.

Problem 5.

(a) [5pts.] State the Weierstrass M-test.



Solution: If {fn} is a sequence of real-valued functions, and for each n we have
some Mn > 0 such that |fn(x)| < Mn for all x ∈ S, and moreover the series∑
Mn converges, then fn converges uniformly on S.

(b) [5pts.] Prove that the series
∑∞

n=2 ln(1 + x
n2 ) converges uniformly on (−1, 1). [Hint:

How do the derivatives behave?]

Solution: Let fn = ln(1 + x
n2 ). Notice that f ′n(x) = 1

n2 · 1
1+ x

n2
= 1

n2+x
. Ergo

|f ′n(x)| ≤ 1
n2−1 , so since

∑∞
n=2

1
n2−1 converges, by the Weierstrass M-test f ′n

converges uniformly. Moreover,
∑
fn(0) =

∑
0 converges, so by our theorem

concerning differentiation and uniform convergence,
∑
fn converges uniformly

on (−1, 1).


